Preliminary communication

UBERGANGSMETALL-METHYLEN-KOMPLEXE

XXIV*. CARBEN-ADDITION AN EINE Co=Co-BINDUNG

WOLFGANG A. HERRMANN*, JOHN M. HUGGINS**, BARBARA REITER und CHRISTINE BAUER

Institut für Anorganische Chemie der Universität Regensburg, Universitätsstrasse 31, D-8400 Regensburg (Deutschland)

(Eingegangen den 15. April 1981)

Summary

Carbene transfer from the diazoalkane precursors IIa—IIf to the formal metal—metal double bond of the dinuclear cobalt complex $[(\eta^{s}-C_{s}Me_{s})Co-(\mu-CO)]_{2}$ (I) (Me = CH₃) occurs rapidly in the temperature range from -40 to +60°C to give the dimetallacyclopropane-type μ -methylene derivatives IIIb—IIIe, IVa, and Vf, respectively.

Das Synthesepotential der aliphatischen Diazoverbindungen für den systematischen Aufbau von μ -Methylen-Komplexen [2] schlägt sich insbesondere in der glatt verlaufenden Carben-Addition an Metall-Mehrfachbindungssysteme nieder [1-10]. Die Konstitution der nach diesem einfachen Verfahren zugänglichen Dimetallacyclopropane $L_x M$ -CRR'-ML_x wird durch sterische Effekte [1-3,7,8] wie auch durch die Stabilität der mehrfach verbrückten Primärprodukte [1] diktiert. Um bei gleicher Konstitution der Methylen-Brücken auch den Einfluss der Zentralmetalle auf das Produktbild zu erfassen, haben wir im Anschluss an unsere Arbeiten mit der Rhodium-Verbindung [$(\eta^5-C_5Me_5)Rh(\mu-CO)]_2$ auch die Bereitschaft des homologen Cobalt-Komplexes I zur Carben-Addition geprüft und berichten hier exemplarisch über dessen Reaktivität gegenüber Diazoalkanen.

Das zweikernige, formal eine Metall-Metall-Doppelbindung aufweisende,

^{*}XXIII. Mitteil. vgl. Ref. 1. Wir danken der Deutschen Forschungsgemeinschaft, dem Fonds der Chemischen Industrie, der Hoechst AG und den Chemischen Werken Marl-Hüls für die grosszügige Unterstützung dieser Arbeit.

^{**}Alexander-von-Humboldt-Stipendiat 1980/81 (University of California, Berkeley/U.S.A.).

strukturchemisch wohlcharakterisierte Komplexsubstrat Bis[(μ -carbonyl)-(η^{5} -pentamethylcyclopentadienyl)cobalt](Co-Co) (I) [11] reagiert in Tetrahydrofuran-Lösung mit 1,1,1-Trifluordiazoethan (IIa), Diazoessigsäure-ethylester (IIb), Diazomalonsäure-diethylester (IIc), Tetrachlor-diazocyclopentadien, (IId) und 9-Diazofluoren (IIe) im Temperaturbereich -40...+25°C bei zügiger N₂-Eliminierung unter Komplexierung der entsprechenden Carben-Bausteine als Brückenliganden. Für die in Ausbeuten zwischen 55 und 90% durch unmittelbare Umkristallisation der Rohprodukte gewinnbaren, kristallin längere Zeit luftbeständigen, in polaren organischen Solventien gut löslichen Komplexe IVa bzw. IIIb-IIIe wurde der Konstitutionsbeweis anhand der IR-, ¹H- und ¹³C-NMR-Spektren geführt (Tab. 1), während die Zusammensetzung jeder Verbindung durch Elementaranalyse und EI- bzw. FD-Massenspektrum gesichert ist (Tab. 2). Alle spektroskopischen Daten fügen sich in das Erscheinungsbild typischer Dimetallacyclopropane [2] ein und bedürfen deshalb keiner weiteren Diskussion.

SCHEMA 1

Diphenyldiazomethan (IIf) reagiert bei Raumtemperatur mit I nur sehr langsam, ergibt aber in siedendem Tetrahydrofuran zu 49% den luftempfindlichen μ -Diphenylmethylen-Komplex Vf (Schema 1, Tab. 1 und 2). Das Produktspektrum beinhaltet somit alle drei Verbindungsklassen, die wir auch bei Carben-Additionen an den mit I homologen Rhodium-Komplex beobachtet hatten [2,3]. IVa weist die Strukturcharakteristika der bereits bekannten Cyclopentadienyl-Komplexe vom Typ (μ -CRR')[(η^5 -C₅H₅)Co(CO)]₂ auf (CRR' = CH(CO₂C₂H₅), C(CO₂C₂H₅)₂ usw. [12a,b], CH₂ [12c] bzw. Indandion-1,3yliden-2 [12d]), während Vf strukturchemisch den Komplexen (μ -CO)-

TABELLE 1

PHYSIKALISCHE DATEN UND IR- SOWIE ¹H-NMR-SPEKTREN DER μ -METHYLEN—COBALT-KOMPLEXE IIID—IIIe, IVa UND VI

Verbindung	Aussehen/ Schmp. (°C) ^a	IR-Daten ($(\nu(CO); cm^{-1})^b$	¹ H-NMR-Daten ^C
ШЪ	Rotbraune Kristalle/ >120 (Zers.)	1853 st, 1803 st, 1654 m [KBr] 1847 m-st, 1796 sst, 1659 w,sh, 1638 m-st [THF]	$C_{5}(C\underline{H}_{3})_{5}$ 1.58; C <u>H</u> 2.65; C <u>H</u> ₂ 3.87 [q]; C <u>H</u> ₃ 1.21 [t] (³ J _{H,H} = 7.00) [CD ₂ Cl ₂]
IIIc ^d	Schwarze, metallisch glänzende Würfel/ 124–130 (Zers.)	1863 st, 1820 sst, 1649 st [KBr] 1859 m, 1818 sst, 1650 m,br [THF]	$C_{s}(CH_{3})_{s}$ 1.51; CH_{2} 3.93 [q]; CH_{3} 1.22 [t] (${}^{3}J_{H_{2}H} = 7.00$) [$CD_{2}CI_{2}$]
IIId	Schwarze, metallisch glänzende Prismen	1858 st, 1818 st [KBr]	$C_{5}(CH_{3})_{5}$ 1.47 [$CD_{2}Cl_{2}$]
IIIe ^d	Schwarze Nadeln/ 120 (Zers.)	1828 sst, 1788 sst [THF] 1820 sst, 1776 sst [KBr]	C ₅ (C <u>H</u> ₃) ₅ 1.14; C ₆ <u>H</u> ₄ 7.40— 7.63 [m], 7.00—7.23 [m] [d _s -THF]
IVa	Braunschwarze Spiesse, Zers. > 109 (Grünfärbung)	/1947 [KBr] 1954 [n-Pentan] 1946 [THF]	$C_{5}(C\underline{H}_{3})_{5}$ 1.77; C \underline{H} 4.57 (${}^{3}J_{F,H} \approx 18.0$) [CD ₂ Cl ₂]
Vf	Violettschwarze Nadelı 120 (Sintern)	1767 [KBr] 1766 [THF] 1762 [CH ₂ Cl ₂]	$C_{s}(CH_{3})_{s}$ 1.45, $C_{b}H_{s}$ 7.20-7.64 [m] $[d_{b}$ -THF]

^a Abgeschmolzene Kapillare (Büchi SMP-20; nicht korrigiert). ^b Beckman 4240; Reproduzierbarkeit ±1 cm. ^c δ -Werte (ppm); int. TMS; Messtemp. 25—31°C (60 oder 90 MH2-Spektren). Falls nicht anders vermerkt, besitzen die Signale die Multiplizität 1. Alle Signale weisen die korrekten relativen Intensitäten auf. Kopplungskonstanten in Hz. ^d ¹³C-NMR: IIIc (CD₂Cl₂; int. TMS; 33°C): $\delta(C_5(CH_3)_5)8.01, \delta(C_5(CH_3)_5)$ 100.61, $\delta(CH_2CH_3)$ 14.57, $\delta(CH_2CH_3)$ 59.74, $\delta(CO_2Et)$ 176.25, $\delta(CO)$ 244.7; IIIe (THF-d₈, int. TMS; 33°C): $\delta(CH_3)$ 7.46, $\delta(C_5(CH_3)_5)$ 99.67, $\delta(C_{13}H_8)$ 113.97, 118.97, 124.36, 126.16, 126.55, 138.27, 157.65; $\delta(CO)$ nicht beobachtet.

.

TABELLE 2

ANALYTISCHE DATEN DER #-METHYLEN-COBALT-KOMPLEXE IIIb-IIIe, IVa UND Vf

Verbindung	Summenformel/ Molmasse ber. (gef.)	Analysenwerte (ber. (gef.) (%)) ^d					
		C	н	Co			
Шь	C ₂₆ H ₃₆ Co₂O₄ / 530.44 (530 ^b)	58.87 (58.76)	6.84 (6 .84)	22.22 (22.06)			
IIIc	C ₂₉ H ₄₀ Co ₂ O ₆ / 602.50 (602 ^{<i>a</i>} ; 610 ^{<i>c</i>})	57.81 (57.88)	6.69 (6.79)	19.56 (19.40)	0	15.96 (16.06)	
IIId	C ₂₇ H ₃₀ Cl ₄ Co ₂ O ₂ / 646.22 (651 ^c)	50.18 (50.51)	4.68 (4.85)	18.24 (18.28)	Cl	21.94 (21.78)	
IIIe	C ₃₅ H ₃₈ Co ₂ O ₂ / 608.56 (608 ^b)	69.08 (69.14)	6.29 (6.36)	19.37 (19.52)	0	5.26 (5.16)	
IVa	C ₂₄ H ₃₁ Co ₂ F ₃ O ₂ / 526.38 (526 ^{<i>a</i>})	54.76 (54.74)	5.94 (5.90)	22.39 (22.18)	F	10.83 (10.81)	
Vf	C ₃₄ H ₄₀ Co ₂ O/ 582.56 (582 ^{a,b})	70.10 (70.63)	6.92 (6.84)	20.23 (20.21)	0	2.75 (2.81)	

^a Massenspektrometrisch (EI-MS; Varian MAT CH 5). ^b Massenspektrometrisch (FD-MS; Varian MAT 311-A). ^c Dampfdruckosmometrisch in Chloroform. ^d Die N-Werte betrugen für alle Verbindungen <0.15%.

 $[\mu$ -C(C₆H₅)₂][(η^{5} -C₅H₅)Co]₂ [12e] sowie (μ -CO)(μ -CH₂)[(η^{5} -C₅Me₅)Co]₂ [12f] entspricht.

Für die Reaktivität sowie den konstitutionsbestimmenden Einfluss der Zentralmetalle, der Carben-Brücken sowie der Peripherie-Liganden sind jetzt die folgenden Zusammenhänge erkennbar:

1. Die Rhodium-Verbindung $[(\eta^{5}-C_{5}Me_{5})Rh(\mu-CO)]_{2}$ (VI) zeigt gegenüber Diazoalkanen eine wesentlich höhere Bereitschaft zur Carben-Addition als das isostrukturelle Cobalt-Derivat I. Die Reaktionen von VI mit IIa—IIc (in THF) verlaufen bereits bei -80°C schlagartig und quantitativ, während die entsprechenden Umsetzungen von I höherer Temperaturen bedürfen und mit IIf erst unter Rückflussbedingungen vonstatten gehen.

2. Die dreifach verbrückten Cobalt-Komplexe III neigen bei gleicher Konstitution der Methylen-Brücken weniger zur Isomerisierung (\rightarrow IV) als die zugehörigen Rhodium-Verbindungen. So bilden sich bei den Umsetzungen von VI mit Diazoessig- und -malonester-Derivaten (z.B. IIb,IIc) unmittelbar die Komplexe vom Typ IV, während I die beständigen Konstitutionsisomere III ergibt.

3. Pentamethylcyclopentadienyl-Liganden begünstigen die Carbonyl-Verbrückung. Dies kommt am deutlichsten beim Vergleich der Komplexe $[\mu$ -C(CO₂Et)₂][(η^{5} -C₅H₅)Co(CO)]₂ [12a] und [μ -C(CO₂Et)₂][(η^{5} -C₅Me₅)Co-(μ -CO)]₂ (IIIe) zum Ausdruck. Die beobachteten Unterschiede sind unter Berücksichtigung der Molekülgeometrien vergleichbarer Verbindungen [3,6,7, 12] nicht auf sterische Effekte zurückzuführen, sondern müssen der elektronenschiebenden Wirkung der zehn Methyl-Substituenten zugeschrieben werden.

4. Umgekehrt führen sehr starke Methylen-Akzeptor-Liganden (z.B. C(H)CF₃) zur Ausbildung des Strukturtyps IV [vgl. 2,3], falls die Isomerisierung III \rightarrow IV sterisch realisierbar ist. Hiermit im Einklang steigen auch die Aktivierungsbarrieren der intramolekularen Isomerisierung von Rhodium-Komplexen des Typs IV (IV \gtrsim III) mit dem π -Akzeptor-Charakter der Brückenliganden (auch SO₂ statt CRR') sowie der Peripherie-Liganden an [13]. Intramolekularer CO-Austausch tritt bei (μ -CH₂)[(η^5 -C₅H₅)Rh(CO)]₂ bis 100°C nicht ein, bei (μ -CH₂)[(η^5 -C₅Me₅)Rh(CO)]₂ jedoch bereits bei ca. -20°C [2,3,10,13].

5. Isoelektronische Verbindungsserien mit CO- bzw. NO-Liganden besitzen nach bisherigen Erfahrungen gleiche Konstitution (vergleiche z.B. (μ -CH₂)-[(η^{5} -C₅H₅)Fe(NO)]₂ [1,4] mit (μ -CH₂)[(η^{5} -C₅H₅)Co(CO)]₂ [12c] sowie [μ -C(CO₂Me)₂][(η^{5} -C₅H₅)Fe(NO)]₂ [13] mit [μ -C(CO₂Me)₂][(η^{5} -C₅H₅)Co(CO)] 12a,b]).

6. Die thermische und/oder photochemische Decarbonylierung von III und IV* tritt bevorzugt bei elektronenreichen Zweikern-Systemen auf, welche die resultierenden M=M-"Doppelbindungen" stabilisieren.

Typische Arbeitsvorschriften

I wurde nach Ref. 11b durch 30 h Kochen einer Toluol-Lösung von $(\eta^{5}-C_{5}Me_{5})Co(CO)_{2}$ [11b] im 3 g-Massstab synthetisiert und durch Säulen-

^{*}Die lichtinduzierte Decarbonylierung von $[\mu-C(C_6H_5)_2][(\eta^5-C_5Me_5)Rh(CO)]_2$ [3] verläuft nach UVkinetischen Untersuchungen als Direktprozess ohne Beteiligung von Zwischenstufen signifikanter Konzentration (W.A. Herrmann, H. Kunkely und Ch. Bauer, unveröffentlichte Ergebnisse). IIIc decarbonyliert thermisch (siedendes THF, 2 d) wie die strukturanalogen Rhodium-Komplexe (\rightarrow V).

chromatographie an Kieselgel (Merck 7734, Akt. II-III, Säule 40×2.6 cm, +15°C) mit Benzol als Elutionsmittel von unumgesetztem Edukt (n-Pentan/ Benzol 5/2; rasch wandernde rote Zone) sowie nicht eluierbaren Zersetzungsprodukten abgetrennt. Wegen der extremen Luftempfindlichkeit von I müssen alle Arbeiten unter strengem Ausschluss von Sauerstoff durchgeführt werden (absolutierte, N₂-gesättigte Lösungsmittel).

1. μ -1,1,1-Trifluorethyliden-bis[carbonyl(η^{5} -pentamethylcyclopentadienvl)cobalt] (Co-Co) (IVa). Eine Lösung von 444 mg (1.0 mmol) reinem, kristallinem I in 25 ml Tetrahydrofuran wird unter kräftigem Rühren bei -80°C mit einer Ether-Lösung (40 ml) von überschüssigem, aus 3.50 g (25.8 mmol) [CF₃CH₂NH₃]Cl frisch zubereitetem IIa [14] versetzt und anschliessend binnen 20 min auf Raumtemperatur erwärmt. Ab ca. -40°C erfolgt Farbumschlag von tiefgrün nach rotbraun. Nach 30 min engt man die klare Lösung im Vakuum zur Trockne ein, extrahiert den braunen, mikrokristallinen Rückstand mit insgesamt 80 ml n-Pentan, engt das filtrierte Extrakt auf etwa ein Drittel des ursprünglichen Volumens ein und überlässt dann bei -35/-78°C der Kristallisation. Die sich dabei abscheidenden schwarzbraunen, matten Spiesse werden abschliessend im Hochvakuum getrocknet. Durch Einengen und erneutes Abkühlen der Mutterlauge ist weiteres IVa gewinnbar. Gesamtausbeute 468 mg (89%).

2. $(\mu$ -Carbonyl)(μ -diphenylmethylen)bis[$(\eta^5$ -pentamethylcyclopentadienvl)cobalt](Co-Co) (Vf). Eine Lösung von 245 mg (0.55 mmol) I (s. o.) und 140 mg (0.72 mmol) IIf in 50 ml Tetrahydrofuran wird 20 h unter Rückfluss gekocht. Unter mässiger CO-Entwicklung verändert sich hierbei die Lösungsfarbe von tiefgrün nach braun. Nach dem Abkühlen auf Raumtemperatur wird im Vakuum eingedampft und der braune, feste Rückstand aus einer möglichst konzentrierten Methylenchlorid/Diethylether-Lösung (1/7) bei -35/-78°C umkristallisiert. Ausb. 158 mg (49%). Sehr gut löslich in Methylenchlorid, Tetrahydrofuran und Benzol. Die Lösungen sind luftempfindlich.

Die Synthesen von IIIb-IIIe verlaufen analog. Reinausbeuten: IIIb 55% (kristallisiert aus n-Pentan); IIIc 68% (aus Diethylether); IIId 61% (aus Diethylether/Methylenchlorid); IIIe 62% (aus Methylenchlorid). I ergibt mit Diazocyclopentadien in 75% Ausb. den Komplex $(\mu, \eta^1 - C_5H_4)[(\eta^5 - C_5Me_5)Co(\mu - CO)]_2$ [13].

Literatur

- 1 W.A. Herrmann und Ch. Bauer, Chem. Ber., im Druck.
- 2 Zusammenfassung: W.A. Herrmann, Advan. Organometal. Chem., im Druck.
- 3 W.A. Herrmann, Ch. Bauer, J. Plank, W. Kalcher, D. Speth und M.L. Ziegler, Angew. Chem.,
- 93 (1981) 212; Angew. Chem. internat. Edit. Engl., 20 (1981) 193.
- 4 W.A. Herrmann und Ch. Bauer, J. Organometal. Chem., 204 (1981) C21.
- Ch. Bauer und W.A. Herrmann, J. Organometal. Chem., 209 (1981) C13. 5
- W.A. Herrmann, J. Plank, Ch. Bauer, M.L. Ziegler, E. Guggolz und R. Alt, Anorg.Allg.Chem., im Druck. 6
- W.A. Herrmann, Ch. Bauer, G. Kriechbaum, J. Plank, M.L. Ziegler, D. Speth und E. Guggolz, Chem. 7 Ber., im Druck.
- W.A. Herrmann, G. Kriechbaum, Ch. Bauer, E. Guggolz und M.L. Ziegler, Angew. Chem., im Druck [Synthese und Struktur von (η⁵-C₅H₅)₂Mo₂(CO)₃(μ-C₅H₄)].
 9 A.D. Clauss, P.A. Dimas und J.R. Shapley, J. Organometal. Chem., 201 (1980) C31.
- 10 N.M. Boag, M. Green, R.M. Mills, G.N. Pain, F.G.A. Stone und P. Woodward, J. Chem. Soc. Chem. Commun., (1980) 1171.

- 11 (a) W.I. Bailey Jr., D.M. Collins, F.A. Cotton, J.C. Baldwin und W.C. Kaska, J. Organometal. Chem., 165 (1979) 373; (b) R. Ginsburg, L.M. Cirjak und L.F. Dahl, J. Chem. Soc. Chem. Commun., (1979) 468.
- (a) W.A. Herrmann, Chem. Ber., 111 (1978) 1077; vgl. W.A. Herrmann und I. Schweizer, Z. Naturforsch, B, 33 (1978) 1128; (b) W.A. Herrmann, I. Schweizer, M. Creswick und I. Bernal. J. Organometal. Chem., 165 (1979) C17; (c) K.H. Theopold und R.G. Bergman, J. Amer. Chem. Soc., 102 (1980) 5694; (d) M. Creswick, I. Bernal, W.A. Herrmann und I. Steffl, Chem. Ber., 113 (1980) 1377; (e) W.A. Herrmann und I. Schweizer, Z. Naturforsch. B, 33 (1978) 911; (f) T.R. Halbert, M.E. Leonowicz und D.J. Maydonovitch, J. Amer. Chem. Soc., 102 (1980) 5101.
- 13 W.A. Herrmann und Ch. Bauer, unveröffentlichte Ergebnisse, 1980/81.
 14 H. Gilman und R.G. Jones, J. Amer. Chem. Soc., 65 (1943) 1458.